Product Document

Datasheet

DS001046

AS7343

14-Channel Multi-Spectral Sensor

v6-00 • 2023-Jun-07

Content Guide

1	General Description	3
1.1 1.2 1.3	Key Benefits & Features Applications Block Diagram	4
2	Ordering Information	5
3	Pin Assignment	6
3.1 3.2	Pin Diagram Pin Description	
4	Absolute Maximum Ratings	8
5	Electrical Characteristics	9
6	Optical Characteristics	10
7	Typical Operating Characteristics	14
8	Functional Description	15
8.1 8.2 8.3 8.4	Device Architecture Sensor Array GPIO	17 17 17
8.5 9	LED Driver (LDR)	

9.1 9.2 9.3 9.4 9.5	I²C Address18I²C Write Transaction19I²C Read Transaction19Timing Characteristics19Timing Diagrams20
10	Register Description21
10.1 10.2	Register Overview
11	Application Information49
11.1 11.2 11.3	Schematic
12	Package Drawings & Markings51
13	Tape & Reel Information52
14	Soldering & Storage Information 54
14.1	Storage Information55
15	Revision Information56
16	Legal Information57

1 General Description

The ams OSRAM AS7343 is a 14-channel highly versatile, multi-purpose spectral sensor enabling new consumer, commercial, industrial and laboratory applications. It is optimized for reflective, transmissive and emissive measurements including color matching, fluid or reagent analysis, lateral flow test applications and spectral identification in the visible range.

The spectral response is defined by individual channels covering approximately 380 nm to 1000 nm with 11 channels centered in the visible spectrum (VIS), plus one near-infrared (NIR) and a clear channel.

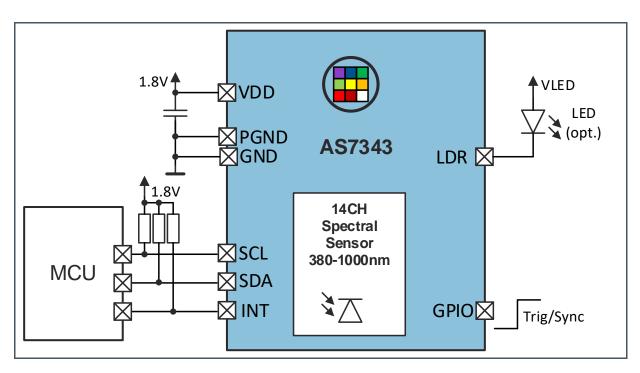
AS7343 integrates high-precision optical filters onto standard CMOS silicon via deposited interference filter technology. A built-in aperture controls the light entering the sensor array to increase accuracy. A programmable digital GPIO and LED driver enable light source and trigger/sync control. Device control and spectral data access is implemented through a serial I²C interface. The device is available in an ultra-low profile package with dimensions of 3.1 mm x 2 mm x 1 mm.

1.1 Key Benefits & Features

The benefits and features of AS7343, 14-Channel Multi-Spectral Sensor, are listed below:

Figure 1: Added Value of Using AS7343

Benefits	Features
Highly versatile multi-purpose spectral sensor	 14 channels between 380 nm and 1000 nm Reflective, transmissive and emissive applications
Highest sensitivity	Enables ultra-low light operationEnables operation behind dark glass or additional external filters
Low power consumption and minimum I ² C traffic	1.8 V VDD operationConfigurable sleep modeInterrupt-driven device
Ultra-high integration	 On chip interference filter technology Integrated LED driver and 6 integrated ADCs 3.1 mm x 2 mm x 1 mm package outline


1.2 Applications

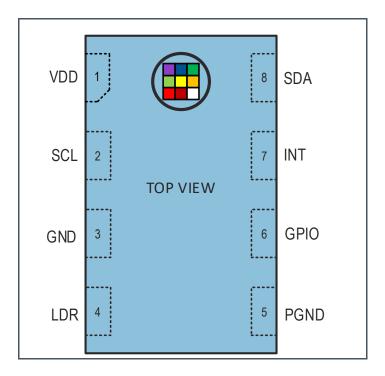
- Emissive light measurement
- Transmissive and reflective measurements such as fluid or color measurements
- Photoelectric smoke detectors

1.3 Block Diagram

The functional blocks of this device are shown below:

Figure 2: Functional Blocks of AS7343

2 Ordering Information


Ordering Code	Package	Delivery Form	Delivery Quantity	I ² C Slave Address
AS7343-DLGT	OLGA-8	Tape & Reel 13-inch	10000 pcs/reel	0x39
AS7343-DLGM	OLGA-8	Tape & Reel 7-inch	500 pcs/reel	0x39

3 Pin Assignment

3.1 Pin Diagram

Figure 3: Pin Assignment of AS7343 (TOP VIEW)

3.2 Pin Description

Figure 4: Pin Description of AS7343

Pin Number	Pin Name	Pin Type ⁽¹⁾	Description
1	VDD	Р	Positive supply voltage terminal
2	SCL	DI	Serial interface clock signal line for I ² C interface. Connect pull up resistor to 1.8 V.
3	GND	Р	Ground. All voltages referenced to GND
4	LDR	A_I/O	LED current sink input. If not used leave pin unconnected.
5	PGND	Р	Ground. All voltages referenced to GND
6	GPIO	D_I/O	General purpose input/output. Default output open drain. If not used leave pin unconnected.

Pin Number	Pin Name	Pin Type ⁽¹⁾	Description
7	INT	DO_OD	Interrupt. Open drain output active low. Connect pull up resistor to 1.8 V. If not used leave pin unconnected.
8	SDA	D_I/O	Serial interface data signal line for I ² C interface. Connect pull up resistor to 1.8 V.

(1) Explanation of abbreviations:

DI Digital Input
D_I/O Digital Input/Output
DO_OD Digital Output, open drain

P Power pin A_I/O Analog pin

4 Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Operating Conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. All voltages with respect to GND/PGND. Device parameters are guaranteed at V_{DD}=1.8 V and T_A=25 °C unless otherwise noted.

Figure 5:
Absolute Maximum Ratings of AS7343

Symbol	Parameter	Min	Max	Unit	Comments
Electrical Pa	arameters				
V _{DD} / V _{GND}	Supply Voltage to Ground	-0.3	1.98	V	Applicable for pin VDD
V _{ANA_MAX}	Analog Pins	-0.3	3.6	V	Applicable for pin LDR
V_{DIG_MAX}	Digital Pins	-0.3	3.6	V	Applicable for pins SCL, SDA, GPIO and INT
I _{SCR}	Input Current (latch-up immunity)	± '	100	mA	AEC-Q100-004E
Io	Output Terminal Current	-1	20	mA	
Electrostation	Discharge				
ESD _{HBM}	Electrostatic Discharge HBM	± 2	2000	V	JS-001-2017
ESD _{CDM}	Electrostatic Discharge CDM	±	500	V	JS-002-2018
Temperature	e Ranges and Storage Conditions				
T _A	Operating Ambient Temperature	-30	85	°C	
T _{STRG}	Storage Temperature Range	-40	85	°C	
T _{BODY}	Package Body Temperature		260	°C	IPC/JEDEC J-STD-020 ⁽¹⁾
RH _{NC}	Relative Humidity (non-condensing)	5	85	%	
MSL	Moisture Sensitivity Level		3		Maximum floor life time of 168h

⁽¹⁾ The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices." The lead finish for Pb-free leaded packages is "Matte Tin" (100% Sn).

5 Electrical Characteristics

All limits are guaranteed. The parameters with Min and Max values are guaranteed with production tests or SQC (Statistical Quality Control) methods. All voltages with respect to GND/PGND. Device parameters are guaranteed at VDD = 1.8 V and T_A = 25 °C unless otherwise noted.

Figure 6: Electrical Characteristics of AS7343

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
VDD	Supply voltage		1.7	1.8	1.98	V	
T _A	Operating free-air temperature ⁽¹⁾		-30	25	85	°C	
Power Consur	mption						
		VDD = 1.8 V; T_A = 25 °C Active mode ⁽³⁾		210	280	μΑ	
IDD	Supply current ⁽²⁾	VDD = 1.8 V; T _A = 25 °C Idle mode ⁽⁴⁾		40	60	μΑ	
		VDD = 1.8 V; T _A = 25 °C Sleep mode ⁽⁵⁾		0.7	5	μΑ	
Digital Pins							
VIH	SCL, SDA input high voltage		1.26			V	
VIL	SCL, SDA input low voltage				0.54	V	
VOL	INT, SDA output low voltage	6 mA sink current			0.4	V	
CI	Input pin capacitance				10	pF	
lleak	Leakage current into SCL, SDA, INT pins		-5		5	μΑ	
GPIO							
CLOAD	Maximum capacitive load GPIO				20	pF	
LED Driver							
		I_LDR = 4 mA ; LED_HALF = "0"			240	m)/	
V I DD	LDR compliance	I_LDR = 4 mA ; LED_HALF = "1"			130	– mV	
V_LDR	voltage	I_LDR = 134 mA ; LED_HALF = "0"	I_LDR = 134 mA ; LED_HALF = "0"		280	\/	
		I_LDR = 134 mA ; LED_HALF = "1"	_		180	– mV	

- (1) While the device is operational across the temperature range, functionality will vary with temperature.
- (2) Supply current values are shown at the VDD pin and do not include current through pin LDR.
- (3) Active state occurs during active integration. (PON = "1"; SP_EN = "1") If wait is enabled (WEN = "1"), supply current is lower during the wait period.
- (4) Idle state occurs when PON = "1" and all functions are disabled.
- (5) Sleep state occurs when PON = "0" and I²C bus is idle. If I²C traffic is active device automatically enters idle mode.

6 Optical Characteristics

All limits are guaranteed. The parameters with Min and Max values are guaranteed with production tests or SQC (Statistical Quality Control) methods. All voltages with respect to GND/PGND. Device parameters are guaranteed at VDD = 1.8 V and T_A = 25 °C unless otherwise noted.

Figure 7: AS7343 Optical Channel Summary

Channel	Peak	Wavelength [nm	Full Width Half Maximum [nm]		
Channel	(min)	λ _P (typ)	(max)	(typ)	
F1	395	405	415	30	
F2	415	425	435	22	
FZ	440	450	460	55	
F3	465	475	485	30	
F4	505	515	525	40	
FY	545	555	565	100	
F5	540	550	560	35	
FXL	590	600	610	80	
F6	630	640	650	50	
F7	680	690	700	55	
F8	735	745	755	60	
NIR	845	855	865	54	

⁽¹⁾ Parameter measured on a production ongoing sample bases on glass using diffused light. The table above is valid for full sensor response including diffuser, package and photodiode response.

⁽²⁾ Peak wavelength is validated by smoothed/averaged monochromator measurement data.

Figure 8: Optical Characteristics of Spectral Channels, AGAIN: 1024x, Integration Time: 27.8 ms

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{e_F1}	Irradiance responsivity channel F1	LED_396 nm ; Ee= 155 mW/m ² LED_408 nm ; Ee= 155 mW/m ²	4311	5749	7760	counts
R _{e_F2}	Irradiance responsivity channel F2	LED_408 nm ; Ee= 155 mW/m ² LED_448 nm ; Ee= 155 mW/m ²	1317	1756	2371	counts
R _{e_FZ}	Irradiance responsivity channel FZ	LED_428 nm ; Ee= 155 mW/m ² LED_480 nm ; Ee= 155 mW/m ²	1627	2169	2711	counts
R _{e_F3}	Irradiance responsivity channel F3	LED_448 nm ; Ee= 155 mW/m ² LED_500 nm ; Ee= 155 mW/m ²	577	770	962	counts
R _{e_F4}	Irradiance responsivity channel F4	LED_500 nm ; Ee= 155 mW/m ² LED_534 nm ; Ee= 155 mW/m ²	2356	3141	3926	counts
R _{e_FY}	Irradiance responsivity channel FY	LED_534 nm ; Ee= 155 mW/m ² LED_593 nm ; Ee= 155 mW/m ²	2810	3747	4684	counts
R _{e_F5}	Irradiance responsivity channel F5	LED_531 nm ; Ee= 155 mW/m ² LED_594 nm ; Ee= 155 mW/m ²	1180	1574	1967	counts
R _{e_FXL}	Irradiance responsivity channel FXL	LED_593 nm ; Ee= 155 mW/m ² LED_628 nm ; Ee= 155 mW/m ²	3582	4776	5970	counts
R _{e_F6}	Irradiance responsivity channel F6	LED_618 nm ; Ee= 155 mW/m ² LED_665 nm ; Ee= 155 mW/m ²	2502	3336	4170	counts
R _{e_F7}	Irradiance responsivity channel F7	LED_685 nm ; Ee= 155 mW/m ² LED_715 nm ; Ee= 155 mW/m ²	4095	5435	6774	counts
R _{e_F8}	Irradiance responsivity channel F8	LED_715 nm ; Ee= 155 mW/m ² LED_766 nm ; Ee= 155 mW/m ²	648	864	1166	counts
R _{e_NIR}	Irradiance responsivity channel NIR	LED_849 nm ; Ee= 155 mW/m ² LED_903 nm ; Ee= 155 mW/m ²	7936	10581	13226	counts

Figure 9: Optical Characteristics of Broadband Channels, AGAIN: 1024x, FD_GAIN: 64x, Integration Time: 27.8 ms

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{e_FD}	Irradiance responsivity channel Flicker	LED_593 nm ; Ee= 155 mW/m ² LED_766 nm ; Ee= 155 mW/m ² FD_GAIN=64x	3233	4311	5389	counts
R _{e_} vis	Irradiance responsivity channel VIS	LED_396 nm; Ee= 155 mW/m ² LED_766 nm; Ee= 155 mW/m ² 2 VIS PDs read-out	749	999	1248	counts

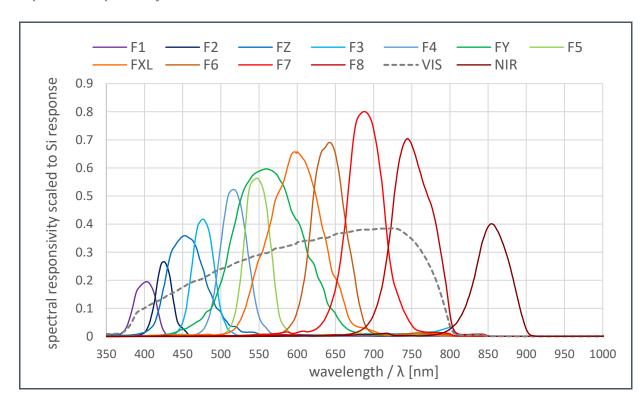
Figure 10: Optical Characteristics of AS7343, AGAIN: 128x, Integration Time: 11 ms (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Dark_1 ⁽¹⁾	Dark ADC count value	Ee = 0 μW/cm ² AGAIN: 512x Integration time: 98 ms		0	5	counts
		AGAIN: 0.5x	7.49	7.9	8.28	
		AGAIN: 1x	15	15.8	16.5	
		AGAIN: 2x	30	31.6	33.2	See
		AGAIN: 4x	61	64	67	note ⁽³⁾
		AGAIN: 8x	117	124	130	_
	Optical gain ratios, relative to 64x gain setting	AGAIN: 16x	235	247	259	_
Gain ratio ⁽²⁾		AGAIN: 32x	0.475	0.5	0.525	
14110		AGAIN: 64x		1		_
		AGAIN: 128x	1.9	2	2.1	_
		AGAIN: 256x	3.9	4.1	4.3	_
		AGAIN: 512x	8.1	8.6	9.1	
		AGAIN: 1024x	15.2	16.9	18.6	
		AGAIN: 2048x	28.2	34.75	41.3	_
ADC noise ⁽⁴⁾		White LED, 2700 K Integration time: 100 ms		0.05		% full scale
t _{int}	Typical integration time ⁽⁵⁾	ASTEP = 599 ATIME = 29		50		ms
tastep	Integration time step size	ASTEP = 999		2.78		ms
h _{ca}	Half cone angle	On the sensor		40		deg

⁽¹⁾ The typical 3-sigma distribution is between 0 and 1 counts for AGAIN setting of 16x.

⁽²⁾ The gain ratios are relative to 64x gain setting and are calculated relative to the response with integration time: 11 ms and AGAIN: 128x.

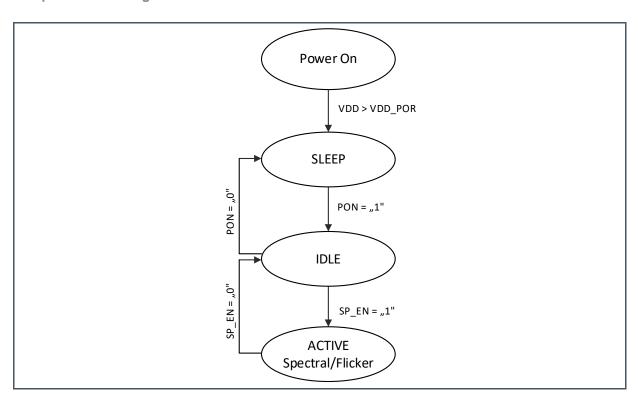
⁽³⁾ ADC noise is calculated as the standard deviation of relative to full scale.


⁽⁴⁾ Integration time, in milliseconds, is equal to: (ATIME + 1) x (ASTEP + 1) x 2.78 μs

⁽⁵⁾ AGAIN ratio 0.5x to 16x is multiplied by 1000 for easier readability.

7 Typical Operating Characteristics

Figure 11: Spectral Responsivity

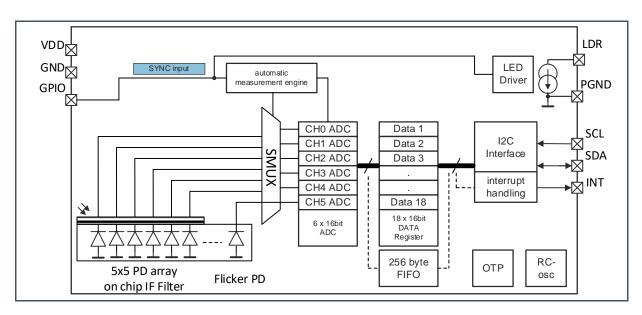


8 Functional Description

Upon power-up (POR), the device initializes. During initialization (typically 200 µs), the device will deterministically send NAK on I²C and cannot accept I²C transactions. All communication with the device must be delayed and all outputs from the device must be ignored including interrupts. After initialization, the device enters the SLEEP state. In this operational state, the internal oscillator and other circuitry are not active, resulting in ultra-low power consumption. If an I²C transaction occurs during this state, the I²C core wakes up temporarily to service the communication. Once the Power ON bit, "PON", is enabled, the device enters the IDLE state in which the internal oscillator and attendant circuitry are active, but power consumption remains low. Whenever the spectral measurement is enabled (SP_EN = "1") the device enters the ACTIVE state. If the spectral measurement is disabled (SP_EN = "0") the device returns to the IDLE state. The figure below describes a simplified state diagram and the typical supply currents in each state.

If Sleep after Interrupt is enabled (SAI = "1" in register 0xC7), the state machine will enter SLEEP when an interrupt occurs. Entering SLEEP does not automatically change any of the register settings (e.g. PON bit is still high, but the normal operational state is over-ridden by SLEEP state). SLEEP state is terminated when the SAI_ACTIVE bit is cleared (the status bit is in register 0xBC and the clear status bit is in register 0xFA).

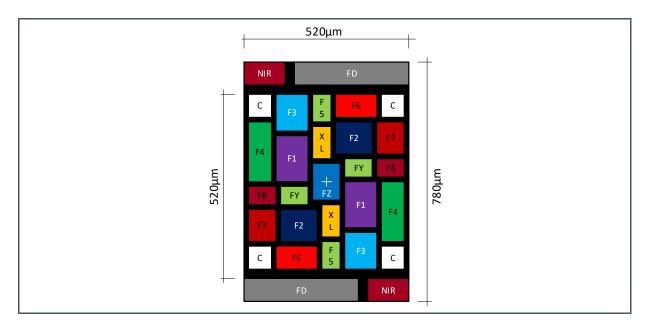
Figure 12: Simplified State Diagram



8.1 Device Architecture

The device features six independent 16-bit ADCs. Gain and integration time of the six ADCs can be adjusted with the I²C interface. A wait time can be programed to automatically set a delay between two consecutive spectral measurements and to reduce overall power consumption. Once a measurement is started, the device is automatically processing the channels and storing the measurement data on chip.

Figure 13: Simplified Block Diagram



8.2 Sensor Array

The device features a 5x5-photodiode array. On top and below the photodiode array there are two photodiodes with dedicated functions such as flicker detection ("FD") and near- infrared response ("NIR"). The photodiode "C" represents a photodiode without filter and is responsive in the visible spectral range ("VIS").

Figure 14: Sensor Array

8.3 GPIO

The GPIO can be used synchronization input to start/stop the spectral measurement. It also allows synchronizing the LED driver (LDR) with an external start/stop signal. Default state of the GPIO is "output".

8.4 Interrupt (INT)

The interrupt (INT) can be used to define thresholds and read-out the device only when the channel threshold has been reached. The pin is active low.

8.5 LED Driver (LDR)

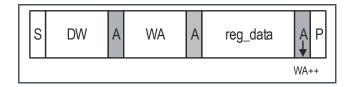
The LED driver is programmable and can be used to drive external LEDs. It is also possible to synchronize the LED driver with an external start/stop signal via pin GPIO.

9 I²C Interface

The device uses I²C serial communication protocol for communication. The device supports 7-bit chip addressing and both standard and full-speed clock frequency modes. Read and Write transactions comply with the standard set by Philips (now NXP). Internal to the device, an 8-bit buffer stores the register address location of the desired byte to read or write. This buffer auto-increments upon each byte transfer and is retained between transaction events (i.e. valid even after the master issues a STOP command and the I²C bus is released). During consecutive Read transactions, the future/repeated I²C Read transaction may omit the memory address byte normally following the chip address byte; the buffer retains the last register address +1. All 16-bit fields have a latching scheme for reading and writing. In general, it is recommended to use I²C bursts whenever possible, especially in this case when accessing two bytes of one logical entity. When reading these fields, the low byte must be read first, and it triggers a 16-bit latch that stores the 16-bit field. The high byte must be read immediately afterwards. When writing to these fields, the low byte must be written first, immediately followed by the high byte. Reading or writing to these registers without following these requirements will cause errors.

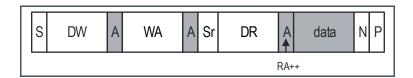
9.1 I²C Address

Figure 15: AS7343 I²C Slave Address


Device	I ² C Address
AS7343	0x39

9.2 I²C Write Transaction

A Write transaction consists of a START, CHIP-ADDRESSWRITE, REGISTER-ADDRESS WRITE, DATA BYTE(S), and STOP (P). Following each byte (9TH clock pulse) the slave places an ACKNOWLEDGE/NOT- ACKNOWLEDGE (A/N) on the bus. If the slave transmits N, the master may issue a STOP.


Figure 16: I²C Byte Write

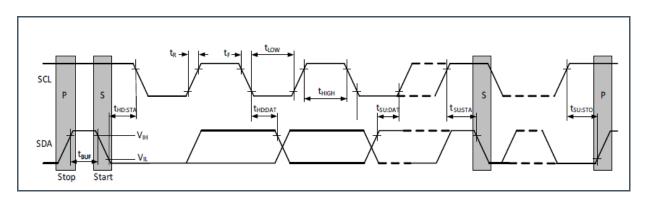
9.3 I²C Read Transaction

A Read transaction consists of a START, CHIP-ADDRESSWRITE, REGISTER-ADDRESS, RESTART, CHIP-ADDRESSREAD, DATA BYTE(S), and STOP. Following all but the final byte the master places an ACK on the bus (9TH clock pulse). Termination of the Read transaction is indicated by a NACK being placed on the bus by the master, followed by STOP.

Figure 17: I²C Read

9.4 Timing Characteristics

Figure 18: I²C Timing Characteristics


Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	I ² C clock frequency			1	MHz
t _{BUF}	Bus free time between start and stop condition	1.3			
thd;sta Hold time after (repeated) start condition. After this period, the first clock is generated.					μs

Symbol	Parameter	Min	Тур	Max	Unit
tsu;sta	Repeated start condition setup time	0.6			
tsu;sto	Stop condition setup time	0.6			
tLOW	SCL clock low period	1.3			
tніgн	SCL clock high period	0.6			
thd;dat	Data hold time	0			
tsu;dat	Data setup time	100			
t _F	Clock/data fall time			300	ns
t _R	Clock/data rise time			300	

9.5 Timing Diagrams

Figure 19: I²C Slave Timing Diagram

10 Register Description

The device is controlled and monitored by registers accessed through the I²C serial interface. These registers provide device control functions and can be read to determine device status and acquire device data.

The register set is summarized below. The values of all registers and fields that are listed as reserved or are not listed must not be changed at any time. Two-byte fields are always latched with the low byte followed by the high byte. The "Name" column illustrates the purpose of each register by highlighting the function associated to each bit. The bits are shown from MSB (D7) to LSB (D0). GRAY fields are reserved and their values must not be changed at any time.

In order to access registers from 0x58 to 0x66 bit REG_BANK in register CFG0 (0xBF) needs to be set to "1". For register access of registers 0x80 and above bit REG_BANK needs to be set to "0".

10.1 Register Overview

Figure 20: Register Overview

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
0x58	AUXID						AUXID	[3:0]	
0x59	REVID						R	REVID [2:0]	
0x5A	ID				ID	[7:0]			
0x66	CFG12						SF	P_TH_CH [2:0]
0x80	ENABLE		FDEN		SMUXE N	WEN		SP_EN	PON
0x81	ATIME				ATIN	ИЕ [7:0]			
0x83	WTIME				WTIN	ME [7:0]			
0x84	CD TILL				SP_TH_	L_LSB [7:0]			
0x85	- SP_TH_L				SP_TH_L	_MSB [7:0]			
0x86	CD TIL II				SP_TH_I	H_LSB [7:0]			
0x87	SP_TH_H				SP_TH_H	H_MSB [7:0]			
0x93	STATUS	ASAT				AINT	FINT		SINT
0x94	ASTATUS	ASAT_ STATU S					AGAIN_STA	TUS [3:0]	
0x95	DATA O		DATA_0_L [7:0]						
0x96	- DATA_0		DATA_0_H [7:0]						
0x97	DATA 1		DATA_1_L [7:0]						
0x98	- DATA_1				DATA_	_1_H [7:0]			
0x99	DATA_2				DATA_	_2_L [7:0]			

0x9A DATA_2 H [7:0] 0x9B DATA_3 DATA_3 L [7:0] 0x9C DATA_3 DATA_3 H [7:0] 0x9D DATA_4 DATA_4 L [7:0] 0x9F DATA_5 L [7:0] 0xA1 DATA_5 L [7:0] 0xA2 DATA_5 H [7:0] 0xA3 DATA_6 H [7:0] 0xA4 DATA_6 H [7:0] 0xA3 DATA_7 L [7:0] 0xA4 DATA_8 H [7:0] 0xA5 DATA_8 H [7:0] 0xA6 DATA_8 H [7:0] 0xA7 DATA_9 L [7:0] 0xA8 DATA_9 H [7:0] 0xA9 DATA_10 L [7:0] 0xAA DATA_11 H [7:0] 0xAB DATA_11 H [7:0] 0xAB DATA_11 L [7:0] 0xAB DATA_11 L [7:0] 0xAB DATA_11 H [7:0] 0xAB DATA_11 L [7:0] 0xAB DATA_11 L [7:0] 0xAB DATA_11 L [7:0] 0xAB DATA_11 L [7:0] 0xAB DATA_11 D [7:0] 0xAB DATA_11 D [7:0]	>
0x9B DATA_3 DATA_3_L [7:0] 0x9C DATA_3_H [7:0] 0x9D DATA_4_L [7:0] 0x9F DATA_4_H [7:0] 0xA0 DATA_5_L [7:0] 0xA1 DATA_6_L [7:0] 0xA2 DATA_6_H [7:0] 0xA3 DATA_7_L [7:0] 0xA4 DATA_7_H [7:0] 0xA5 DATA_8_L [7:0] 0xA6 DATA_8_L [7:0] 0xA7 DATA_9_L [7:0] 0xA8 DATA_9 [7:0] 0xA9 DATA_9 [7:0] 0xA9 DATA_10_L [7:0] 0xA9 DATA_10_L [7:0] 0xA0 DATA_11_L [7:0] 0xA1 DATA_11_L [7:0] 0xA2 DATA_11_L [7:0] 0xAB DATA_12_L [7:0] 0xAB <	
DATA_3 DATA_3_H[7:0] 0x9D DATA_4 DATA_4_L[7:0] 0x9F DATA_4_H[7:0] DATA_5_L[7:0] 0xA0 DATA_5_L[7:0] DATA_5_L[7:0] 0xA1 DATA_6_L[7:0] DATA_6_L[7:0] 0xA2 DATA_6_H[7:0] DATA_6_L[7:0] 0xA3 DATA_7 DATA_7_L[7:0] 0xA5 DATA_8_L[7:0] DATA_8_L[7:0] 0xA6 DATA_8_H[7:0] DATA_9_L[7:0] 0xA7 DATA_9_H[7:0] DATA_9_H[7:0] 0xA8 DATA_9_H[7:0] DATA_10_L[7:0] 0xA9 DATA_10_L[7:0] DATA_11_L[7:0] 0xAB DATA_11_L[7:0] DATA_11_L[7:0] 0xAB DATA_11_L[7:0] DATA_12_L[7:0] 0xAB DATA_12_L[7:0] DATA_12_L[7:0] 0xAB DATA_13_L[7:0] DATA_13_L[7:0] 0xBD DATA_13 DATA_13_L[7:0] 0xB1 DATA_14_L[7:0] DATA_14_L[7:0] 0xB2 DATA_15_L[7:0] DATA_16_L[7:0]	
DATA_4_L [7:0]	
DATA_4 DATA_4 [7:0] 0x9F DATA_5 [7:0] 0xA0 DATA_5 [7:0] 0xA1 DATA_6 [7:0] 0xA2 DATA_6 [7:0] 0xA3 DATA_7 [7:0] 0xA4 DATA_7 [7:0] 0xA5 DATA_8 [7:0] 0xA6 DATA_8 [7:0] 0xA7 DATA_8 [7:0] 0xA8 DATA_9 [7:0] 0xA9 DATA_9 [7:0] 0xAA DATA_10 [7:0] 0xAA DATA_10 [7:0] 0xAA DATA_10 [7:0] 0xAA DATA_11 [7:0] 0xAC DATA_11 [7:0] 0xAC DATA_11 [7:0] 0xAB DATA_12 [7:0] 0xAB DATA_12 [7:0] 0xAB DATA_13 [7:0] 0xBD DATA_13 [7:0] 0xBD DATA_14 [7:0] 0xBB DATA_15 [7:0] 0xBB DATA_15 [7:0] 0xBB DATA_16 [7:0]	
0x9F DATA_5 DATA_5_L[7:0] 0xA0 DATA_5_H[7:0] 0xA1 DATA_6_L[7:0] 0xA2 DATA_6_L[7:0] 0xA3 DATA_7_L[7:0] 0xA4 DATA_7_H[7:0] 0xA5 DATA_8_L[7:0] 0xA6 DATA_8_H[7:0] 0xA7 DATA_9_L[7:0] 0xA8 DATA_9_L[7:0] 0xA9 DATA_9_H[7:0] 0xAA DATA_10_L[7:0] 0xAA DATA_10_L[7:0] 0xAB DATA_11_L[7:0] 0xAC DATA_11_L[7:0] 0xAB DATA_11_L[7:0] 0xAB DATA_11_L[7:0] 0xAB DATA_12_L[7:0] 0xAB DATA_12_L[7:0] 0xAB DATA_13_L[7:0] 0xBB DATA_13_L[7:0] 0xBB DATA_14_L[7:0] 0xBB DATA_15_L[7:0] 0xBB DATA_15_L[7:0] 0xBB DATA_16_L[7:0]	
OXAO DATA_5 DATA_5H[7:0] 0XA1 DATA_6_L[7:0] DATA_6_L[7:0] 0XA2 DATA_6_H[7:0] DATA_6_H[7:0] 0XA4 DATA_7_L[7:0] DATA_7_H[7:0] 0XA5 DATA_8_L[7:0] DATA_8_L[7:0] 0XA7 DATA_8_H[7:0] DATA_9_L[7:0] 0XA8 DATA_9_H[7:0] DATA_9_H[7:0] 0XA9 DATA_10_H[7:0] DATA_10_H[7:0] 0XAB DATA_11_L[7:0] DATA_11_L[7:0] 0XAB DATA_11_H[7:0] DATA_11_L[7:0] 0XAB DATA_12_L[7:0] DATA_12_L[7:0] 0XAB DATA_12_L[7:0] DATA_13_L[7:0] 0XAB DATA_13_L[7:0] DATA_13_L[7:0] 0XB1 DATA_14_L[7:0] DATA_14_L[7:0] 0XB2 DATA_14_L[7:0] DATA_15_L[7:0] 0XB3 DATA_15_L[7:0] DATA_15_H[7:0] 0XB5 DATA_16 DATA_16_L[7:0]	
0xA1 DATA_6 L [7:0] 0xA2 DATA_6_H [7:0] 0xA3 DATA_7_L [7:0] 0xA4 DATA_7_H [7:0] 0xA5 DATA_8_L [7:0] 0xA6 DATA_8_H [7:0] 0xA7 DATA_8_H [7:0] 0xA8 DATA_9_L [7:0] 0xA9 DATA_9_H [7:0] 0xAA DATA_10_L [7:0] 0xAB DATA_11_L [7:0] 0xAB DATA_12_L [7:0] 0xAB DATA_13_L [7:0] 0xAB DATA_13_L [7:0] 0xBD DATA_14 DATA_13_L [7:0] 0xB1 DATA_14_L [7:0] DATA_15_L [7:0] 0xB2 DATA_15_L [7:0] DATA_15_L [7:0] 0xB3 DATA_16 DATA_16_L [7:0]	
0xA2 DATA_6 DATA_6_H [7:0] 0xA3 DATA_7_L [7:0] DATA_7_L [7:0] 0xA4 DATA_7_H [7:0] DATA_8_L [7:0] 0xA5 DATA_8_H [7:0] DATA_8_H [7:0] 0xA7 DATA_9_L [7:0] DATA_9_L [7:0] 0xA8 DATA_9_H [7:0] DATA_9_H [7:0] 0xA9 DATA_10_L [7:0] DATA_10_L [7:0] 0xAB DATA_11_L [7:0] DATA_11_L [7:0] 0xAC DATA_11_L [7:0] DATA_11_L [7:0] 0xAD DATA_12_L [7:0] DATA_12_L [7:0] 0xAE DATA_13_L [7:0] DATA_13_L [7:0] 0xBD DATA_13 DATA_13_L [7:0] 0xB1 DATA_14_L [7:0] DATA_14_L [7:0] 0xB2 DATA_14_H [7:0] DATA_15_L [7:0] 0xB3 DATA_15_L [7:0] DATA_15_L [7:0] 0xB5 DATA_16 DATA_16_L [7:0]	
0xA3 DATA_7_L [7:0] 0xA4 DATA_7_L [7:0] 0xA5 DATA_8_L [7:0] 0xA6 DATA_8_L [7:0] 0xA7 DATA_8_H [7:0] 0xA8 DATA_9_L [7:0] 0xA9 DATA_9_H [7:0] 0xAA DATA_10_L [7:0] 0xAA DATA_10_H [7:0] 0xAB DATA_11_L [7:0] 0xAC DATA_11_H [7:0] 0xAB DATA_11_L [7:0] 0xAB DATA_12_L [7:0] 0xAB DATA_12_L [7:0] 0xAB DATA_13_L [7:0] 0xAB DATA_13_L [7:0] 0xAB DATA_13_L [7:0] 0xB1 DATA_14_L [7:0] 0xB2 DATA_14_L [7:0] 0xB3 DATA_15_L [7:0] 0xB4 DATA_15_H [7:0] 0xB5 DATA_16_L [7:0]	
0xA4 DATA_7 DATA_7H[7:0] 0xA5 DATA_8_L[7:0] DATA_8_L[7:0] 0xA6 DATA_8_H[7:0] DATA_9_L[7:0] 0xA7 DATA_9_L[7:0] DATA_9_H[7:0] 0xA8 DATA_10_L[7:0] DATA_10_L[7:0] 0xAA DATA_11_L[7:0] DATA_11_L[7:0] 0xAB DATA_11_H[7:0] DATA_11_L[7:0] 0xAC DATA_12_L[7:0] DATA_12_L[7:0] 0xAE DATA_12_H[7:0] DATA_13_L[7:0] 0xAF DATA_13_L[7:0] DATA_13_L[7:0] 0xB1 DATA_14_L[7:0] DATA_14_L[7:0] 0xB2 DATA_14_H[7:0] DATA_15_L[7:0] 0xB3 DATA_15_L[7:0] DATA_15_L[7:0] 0xB5 DATA_16_L[7:0] DATA_16_L[7:0]	
0xA6 DATA_8 DATA_8_L [7:0] 0xA7 DATA_8_H [7:0] 0xA8 DATA_9_L [7:0] 0xA9 DATA_9_H [7:0] 0xAA DATA_10_L [7:0] 0xAB DATA_11_L [7:0] 0xAC DATA_11_L [7:0] 0xAD DATA_11_H [7:0] 0xAE DATA_12_L [7:0] 0xAF DATA_12_H [7:0] 0xB1 DATA_13_L [7:0] 0xB2 DATA_14_L [7:0] 0xB3 DATA_14_L [7:0] 0xB4 DATA_15_L [7:0] 0xB5 DATA_16	
0xA6 DATA_8 H [7:0] 0xA7 DATA_9 L [7:0] 0xA8 DATA_9 L [7:0] 0xA9 DATA_10 L [7:0] 0xAA DATA_10 H [7:0] 0xAB DATA_11 L [7:0] 0xAC DATA_11 H [7:0] 0xAD DATA_11 L [7:0] 0xAE DATA_12 L [7:0] 0xAF DATA_12 H [7:0] 0xBO DATA_13 L [7:0] 0xB1 DATA_13 H [7:0] 0xB2 DATA_14 H [7:0] 0xB3 DATA_15 L [7:0] 0xB4 DATA_15 L [7:0] 0xB5 DATA_16 L [7:0]	
0xA7 DATA_9_L [7:0] 0xA8 DATA_9_H [7:0] 0xA9 DATA_10_L [7:0] 0xAA DATA_10_H [7:0] 0xAB DATA_11_L [7:0] 0xAC DATA_11_H [7:0] 0xAD DATA_12_L [7:0] 0xAE DATA_12_H [7:0] 0xAF DATA_13_L [7:0] 0xB0 DATA_13_H [7:0] 0xB1 DATA_14_L [7:0] 0xB2 DATA_14_H [7:0] 0xB3 DATA_15_L [7:0] 0xB4 DATA_15_L [7:0] 0xB5 DATA_16	
0xA8 DATA_9 H [7:0] 0xA9 DATA_10 L [7:0] 0xAA DATA_10 H [7:0] 0xAB DATA_11 L [7:0] 0xAC DATA_11 H [7:0] 0xAD DATA_11 L [7:0] 0xAE DATA_12 L [7:0] 0xAF DATA_12 L [7:0] 0xB0 DATA_13 L [7:0] 0xB1 DATA_13 H [7:0] 0xB2 DATA_14 L [7:0] 0xB3 DATA_15 L [7:0] 0xB4 DATA_15 H [7:0] 0xB5 DATA_16 L [7:0]	
0xA9 DATA_10_L [7:0] 0xAA DATA_10_H [7:0] 0xAB DATA_11_L [7:0] 0xAC DATA_11_H [7:0] 0xAD DATA_12_L [7:0] 0xAE DATA_12_H [7:0] 0xAF DATA_13_L [7:0] 0xB0 DATA_13_H [7:0] 0xB1 DATA_14_L [7:0] 0xB2 DATA_14_H [7:0] 0xB3 DATA_15_L [7:0] 0xB4 DATA_15_H [7:0] 0xB5 DATA_16	
OXAA DATA_10 0XAB DATA_11_L [7:0] 0XAC DATA_11_L [7:0] 0XAD DATA_12_L [7:0] 0XAE DATA_12_H [7:0] 0XAF DATA_13_L [7:0] 0XB0 DATA_13_H [7:0] 0XB1 DATA_14_L [7:0] 0XB2 DATA_14_H [7:0] 0XB3 DATA_15_L [7:0] 0XB4 DATA_15_L [7:0] 0XB5 DATA_16_L [7:0]	
0xAB DATA_11_L [7:0] 0xAC DATA_11_H [7:0] 0xAD DATA_12_L [7:0] 0xAE DATA_12_H [7:0] 0xAF DATA_13_L [7:0] 0xB0 DATA_13_H [7:0] 0xB1 DATA_14_L [7:0] 0xB2 DATA_14_H [7:0] 0xB3 DATA_15_L [7:0] 0xB4 DATA_15_H [7:0] 0xB5 DATA_16_L [7:0]	
OXAC DATA_11 DATA_11_H [7:0] 0xAD DATA_12_L [7:0] 0xAE DATA_12_H [7:0] 0xAF DATA_13_L [7:0] 0xB0 DATA_13_H [7:0] 0xB1 DATA_14_L [7:0] 0xB2 DATA_14_H [7:0] 0xB3 DATA_15_L [7:0] 0xB4 DATA_15_H [7:0] 0xB5 DATA_16_L [7:0]	
0xAD DATA_12_L [7:0] 0xAE DATA_12_H [7:0] 0xAF DATA_13_L [7:0] 0xB0 DATA_13_H [7:0] 0xB1 DATA_14_L [7:0] 0xB2 DATA_14_H [7:0] 0xB3 DATA_15_L [7:0] 0xB4 DATA_15_H [7:0] 0xB5 DATA_16	
OXAE DATA_12_H [7:0] 0xAF DATA_13_L [7:0] 0xB0 DATA_13_H [7:0] 0xB1 DATA_14_L [7:0] 0xB2 DATA_14_H [7:0] 0xB3 DATA_15_L [7:0] 0xB4 DATA_15_H [7:0] 0xB5 DATA_16_L [7:0]	
0xAF DATA_13_L [7:0] 0xB0 DATA_13_H [7:0] 0xB1 DATA_14_L [7:0] 0xB2 DATA_14_H [7:0] 0xB3 DATA_15_L [7:0] 0xB4 DATA_15_H [7:0] 0xB5 DATA_16_L [7:0]	
OxB0 DATA_13 0xB1 DATA_13_H [7:0] 0xB2 DATA_14_L [7:0] 0xB3 DATA_15_L [7:0] 0xB4 DATA_15_H [7:0] 0xB5 DATA_16_L [7:0]	
0xB1 DATA_14_L [7:0] 0xB2 DATA_14_H [7:0] 0xB3 DATA_15_L [7:0] 0xB4 DATA_15_H [7:0] 0xB5 DATA_16_L [7:0]	
0xB2 DATA_14 0xB3 DATA_15_L [7:0] 0xB4 DATA_15_H [7:0] 0xB5 DATA_16_L [7:0]	
0xB3 DATA_15_L [7:0] 0xB4 DATA_15_H [7:0] 0xB5 DATA_16	
OxB4 DATA_15 OxB5 DATA_16 DATA_16_L [7:0]	
0xB5 DATA_16_L [7:0]	
DATA_16	
0xB7 DATA_17_L [7:0]	
OxB8 DATA_17 — DATA_17 — DATA_17_H [7:0]	
	SAT_
0x91 STATUS 3 INT_SP_H INT_SP _L	
0xBB STATUS 5 SINT SINT _FD _SMUX	
OXBC STATUS 4 FIFO_OV OVTEMP FD_TRI G SP_TRI SAI_ INT	_BUS
0xBF CFG 0 LOW_ REG_ POWER BANK WLONG	

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
0xC6	CFG1		_	_		ŀ	AGAIN[4:0]		
0xC7	CFG3				SAI				
0xF5	CFG6					MUX_ MD[4:3]			
0xC9	CFG8	FIFO_TH	[7:6]						
0xCA	CFG9		SIEN _FD		SIEN _SMUX				
0x65	CFG10						FI	D_PERS [2	2:0]
0xCF	PERS						APERS	[3:0]	
0x6B	GPIO					GPIO_ INV	GPIO_ IN_EN	GPIO_ OUT	GPIO_ IN
0xD4	- ASTEP				AST	EP [7:0]			
0xD5	ASTEP				ASTE	EP [15:8]			
0xD6	CFG20	FD_FIF O_8b	auto_	_SMUX					
0xCD	LED	LED_A CT			L	ED_DRIVE [6:0]			
0xD7	AGC_GAIN_ MAX		AGC_FD_G	AIN_MAX [7:4	1]				
0xDE	AZ_CONFIG				AT_NTH_IT	ERATION [7:0]			
0xE0	FD_TIME_1				FD_T	IME [7:0]			
0xE2	FD_TIME_2			FD_GAIN [7	:3]		FD	_TIME [10	:8]
0xDF	FD_CFG0	FIFO_ WRITE _FD							
0xE3	FD_STATUS			FD_ VALID	FD_ SAT	FD_ 120Hz_ VALID	FD_ 100Hz_ VALID	FD_ 120Hz	FD_ 100Hz
0xF9	INTENAB	ASIEN				SP_IEN	FIEN		SIEN
0xFA	CONTROL					SW_ RESET	SP_MAN _AZ	FIFO_ CLR	CLEAR_ SAI_ACT
0xFC	FIFO_MAP		FIFO_WRITE_CH5_DATA - FIFO_WRITE_CH0_DATA [6:1] ASTAT					ASTATU S	
0xFD	FIFO_LVL				FIFO_	_LVL [7:0]			
0xFE	- FDATA		FDATA_L [7:0]						
0xFF	LDATA				FDATA	A_H [15:8]			

10.2 Detailed Register Description

For easier readability, the detailed register description is done in groups of registers related to dedicated device functions. This is not necessarily related to its register address.

Explanation of register access abbreviations:

RW = Read or write

R = Read only

W = Write only

SC = Self-clearing after access

10.2.1 Enable and Configuration Registers

The following registers are needed to power up and configure the device. To operate the device set bit PON = "1" first (register 0x80) after that configure the device and enable interrupts before setting SP_EN = "1". Changing configuration while SP_EN = "1" may result in invalid results.

ENABLE Register (Address 0x80)

Figure 21:

ENABLE Register

Addr: 0x80		ENABLE	ENABLE			
Bit	Bit Name	Default	Access	Bit Description		
7	Reserved	0	RW	Reserved		
6	FDEN	0	RW	Flicker Detection Enable. 0: Flicker Detection disabled 1: Flicker Detection enabled		
5	Reserved	0	RW	Reserved		
4	SMUXEN	0	RW	SMUX Enable. 1: Starts SMUX command Note: This bit gets cleared automatically as soon as SMUX operation is finished		
3	WEN	0	RW	Wait Enable. 0: Wait time between two consecutive spectral measurements disabled 1: Wait time between two consecutive spectral measurements enabled		
2	Reserved	0	RW	Reserved		
1	SP_EN	0	RW	Spectral Measurement Enable. 0: Spectral Measurement Disabled 1: Spectral Measurement Enabled		

Addr:	0x80	ENABLE	ENABLE	
Bit	Bit Name	Default	Access	Bit Description
				Power ON. 0: AS7343 disabled
0	PON	0	RW	1: AS7343 enabled Note: When bit is set, internal oscillator is activated, allowing timers and ADC channels to operate.

GPIO Register (Address 0x6B)

Figure 22: GPIO Register

Addr: 0x6B		GPIO	GPIO		
Bit	Bit Name	Default	Access	Bit Description	
7:4	Reserved	0		Reserved	
3	GPIO_INV	0	RW	GPIO Invert. If set, the GPIO output is inverted.	
2	GPIO_IN_EN	0	RW	GPIO Input Enable. If set, the GPIO pin accepts a non-floating input.	
1	GPIO_OUT	1	RW	GPIO Output. If set, the output state of the GPIO is active directly.	
0	GPIO_IN	0	R	GPIO Input. Indicates the status of the GPIO input if GPIO_IN_EN is set.	

LED Register (Address 0xCD)

Figure 23: LED Register

Addr: 0xCD		LED	LED		
Bit	Bit Name	Default	Access	Bit Description	
7	LED_ACT	0	RW	LED Control. 0: External LED connected to pin LDR off 1: External LED connected to pin LDR on	
6:0	LED_DRIVE	000 0100	RW	LED Driving Strength. 000 0000: 4 mA 000 0001: 6 mA 000 0010: 8 mA 000 0011: 10 mA 000 0100: 12 mA	

Addr:	0xCD	LED			
Bit	Bit Name	Default	Access	Bit Description	
				111 1110: 256 mA	
				111 1111: 258 mA	

INTENAB Register (Address 0xF9)

Figure 24:

INTENAB Register

Addr:	0xF9	INTENAB	INTENAB			
Bit	Bit Name	Default	Access	Bit Description		
7	ASIEN	0	RW	Spectral and Flicker Detect Saturation Interrupt Enable. When asserted permits saturation interrupts to be generated.		
6:4	Reserved			Reserved		
				Spectral Interrupt Enable.		
3	SP_IEN	0	RW	When asserted permits interrupts to be generated, subject to the spectral thresholds and persistence filter. Bit is mirrored in the ENABLE register.		
				FIFO Buffer Interrupt Enable.		
2	F_IEN	0	RW	When asserted permits interrupt to be generated when FIFO_LVL exceeds the FIFO threshold condition.		
1	Reserved	0		Reserved		
				System Interrupt Enable.		
0	SIEN RW	RW	When asserted permits system interrupts to be generated. Indicates that flicker detection status has changed or SMUX operation has finished.			

CONTROL Register (Address 0xFA)

Figure 25:

CONTROL Register

Addr: 0xFA		CONTROL	CONTROL		
Bit	Bit Name	Default	Access	Bit Description	
7:4	Reserved	0		Reserved	
3	SW_RESET	0	RW	Software Reset When set the device will force a power on reset.	
2	SP_MAN_AZ	0	RW	Spectral Engine Manual Autozero.	

Addr:	Addr: 0xFA		CONTROL	
Bit	Bit Name	Default	Access	Bit Description
				Starts a manual autozero of the spectral engines. Set SP_EN = 0 before starting a manual autozero for it to work.
				FIFO Buffer Clear.
1	FIFO_CLR	0	RW	Clears all FIFO data, FINT, FIFO_OV, and FIFO_LVL.
			Clear Sleep-After-Interrupt Active.	
0	CLEAR_SAI_ACT	0	RW	Clears SAI_ACTIVE, ends sleep, and restarts device operation.

10.2.2 ADC Timing Configuration / Integration Time

The integration time is set using the ATIME (0x81) and ASTEP (0xD4, 0xD5) registers. The integration time, in milliseconds, is equal to:

Equation 1: Setting the integration time

$$t_{int} = (ATIME + 1) \times (ASTEP + 1) \times 2.78 \,\mu s$$

It is not allowed that both settings –ATIME and ASTEP – are set to "0".

The integration time also defines the full-scale ADC value, which is equal to:

Equation 2: ADC full scale value¹

$$ADC_{fullscale} = (ATIME + 1) \times (ASTEP + 1)$$

ATIME Register (Address 0x81)

Figure 26:

ATIME Register

Addr: 0x81 ATIME					
Bit	Bit Name	Default	Access	Bit Description	on
				Integration Time	of integration steps from 1 to 255
7:0	ATIME	0x00	RW	Value	Integration Time
			0	ASTEP	
				n	ASTEP x (n+1)

¹ The maximum ADC count is 65535. Any ATIME/ASTEP field setting resulting in higher ADC full-scale values would result in a full-scale of 65535.

Addr:	Addr: 0x81 ATIME				
Bit	Bit Name	Default	Access	Bit Description	
				255	ASTEP x 256

ASTEP Register (Address 0xD4, 0xD5)

Figure 27: ASTEP Register

Addr: 0xD4, 0xD5		ASTEP	ASTEP				
Bit	Bit Name	Default	Access	Bit Description	on		
				Integration Time Sets the integration 2.78 µs. The defa	on time per step in increments of		
7:0	7:0 ASTEP 0xCA		RW	VALUE	STEP SIZE		
				0	2.78 µs		
		999		n	2.78 μs x (n+1)		
				599	1.67 ms		
				999	2.78 ms		
15:8	ASTEP 0xCB			17999	50 ms		
				65534	182 ms		
				65535	Reserved, do not use		

WTIME Register (Address 0x83)

If wait is enabled (WEN = "1" register 0x80), each new measurement is started based on WTIME. It is necessary for WTIME to be sufficiently long for spectral integration and any other functions to be completed within the period. The device will warn the user if the timing is configured incorrectly. If WTIME is too short, then SP_TRIG in register STATUS4 (ADDR: 0xBC) will be set to "1".

Figure 28: WTIME Register

Addr:	ddr: 0x83 WTIME					
Bit	Bit Name	Default	Access	Bit Des	cription	
7:0	WTIMF	0x00	RW	8-bit value t	easurement Wait Tires specify the delay be spectral measureme	etween two
7.0 V	*********	oxee .		Value	Wait Cycles	Wait Time
				0x00	1	2.78 ms

Addr:	0x83	WTIME				
Bit	Bit Name	Default	Access	Bit Des	scription	
				0x01	2	5.56 ms
				n	n	2.78 ms x (n+1)
				0xff	256	711 ms

FD_TIME Register (Address 0xE0, 0xE2)

The register FD_Time_1 and FD_Time_2 can be used to configure the integration time and gain (ADC 5) of the flicker detection independently from the other ADCs. The FD_TIME register is an 11-bit register with the MSB in register 0xDA (bit 10:8) and the LSB in register 0xD8 (bit 7:0). The bit FDEN (register 0x80) must be set to "1" in order to use the FD_TIME registers. If the bit FDEN is not set, ADC5 runs automatically with the same gain and integration time as ADC0 to ADC4.

Equation 3: Calculating the flicker detection integration time

$$t_{int,FD} = FD_TIME \times 2.78 \,\mu s$$

Figure 29:

FD_Time_1 Register

Addr: 0xE0		FD_TIME_1	FD_TIME_1		
Bit	Bit Name	Default Access Bit Description		Bit Description	
7:0	FD_TIME [7:0]	0110 0111	RW	LSB of flicker detection integration time. Note: Must not be changed during FDEN = 1 and PON = 1.	

Figure 30: FD_Time_2 Register

Addr: 0xE2		FD_TIME_	FD_TIME_2			
Bit	Bit Name	Default	Access	Bit Description	on	
				Flicker Detection	n Gain Setting (ADC5)	
				VALUE	GAIN	
				0	0.5x	
				1	1x	
				2	2x	
				3	4x	
			4	8x		
7:3	FD_GAIN	9	RW	5	16x	
				6	32x	
				7	64x	
				8	128x	
				9	256x	
				10	512x	
				11	1024x	
				12	2048x	
				MSB of flicker de	tection integration time.	
2:0	FD_TIME [10:8]	1	RW	Note: Must not be PON = 1.	e changed during FDEN = 1 and	

10.2.3 ADC Configuration

The following registers provide configuration for the 6 integrated ADCs (CH0 to CH5). It is possible to adjust the gain and setup the auto zero compensation for the ADCs.

CFG1 Register (Address 0xC6)

Figure 31: CFG1 Register

Addr: 0xC6		CFG1	CFG1				
Bit	Bit Name	Default	Access	Bit Description	on		
7:5	Reserved	0		Reserved			
				Spectral Engine Sets the spectral			
				VALUE	GAIN		
				0	0.5x		
				1	1x		
				2	2x		
				3	4x		
			RW	4	8x		
4:0	AGAIN	9		5	16x		
				6	32x		
				7	64x		
				8	128x		
				9	256x		
				10	512x		
				11	1024x		
				12	2048x		

CFG10 Register (Address 0x65)

Figure 32: CFG10 Register

Addr:	0x65	CFG10		
Bit	Bit Name	Default	Access	Bit Description
7:3	Reserved	Reserved	Reserved	Reserved

Addr:	Addr: 0x65 CFG		10	
Bit	Bit Name	Default	Default Access Bit Description	
2:0	FD_PERS	2	RW	Flicker Detect Persistence. Sets the number of consecutive flicker detect results that must be different before the flicker detect status will be changed. Flicker detection interrupts on SINT are affected by this setting. Flicker detect persistence is equal to 2 ^(FD_PERS-1) Setting "0" equals to every time.

AZ_CONFIG Register (Address 0xDE)

The following register configures how often the spectral engine offsets are reset (auto zero) to compensate for changes of the device temperature. The typical time auto zero needs to be completed is 15 ms.

Figure 33: AZ_CONFIG Register

Addr: 0xDE		AZ_CONFIG			
Bit	Bit Name	Default	Access	Bit Description	
	AZ_NTH_ITERATION	255	RW	Sets the fre zero of the s Note: If FDE The flicker of	quency at which the device performs auto spectral engines. EN = "1" auto zero is also done for ADC 5. detection measurement will be interrupted ed in this case.
				VALUE	AUTOZERO FREQUENCY
7:0				0	Never (not recommended)
				1	Every integration cycle
				2	Every 2 cycles
					Every "AZ_NTH_ITERATION" cycle
				254	Every 254 cycles
				255	Only before first measurement cycle

AGC_GAIN_MAX Register (Address 0xD7)

Figure 34:

AGC_GAIN_MAX Register

Addr: 0xD7		AGC_GAIN_MAX		
Bit	Bit Name	Default	Access	Bit Description
	AGC_FD_GAIN_MAX	9 RW		Flicker Detection AGC Gain Max.
7:4			RW	Sets the maximum gain for flicker detection to $2^{\mathit{AGC_FD_GIAN_MAX}}$
				Default value is 9 (256x). The range can be set from 0 (0.5x) to 10 (2048x).
3:0	Reserved	9	Reserved	Reserved

CFG8 Register (Address 0xC9)

Figure 35: CFG8 Register

Addr: 0xC9		CFG8	CFG8				
Bit	Bit Name	Default	Access	Bit Description			
				FIFO Threshold. Sets a threshold on the FIFO buffer interrupt (FINT).	level that triggers the first FIFO		
				VALUE	FIFO_LVL		
7:6	FIFO_TH 2	2	RW	0	1		
				1	4		
				2	8		
				3	16		
5:0	Reserved	0		Reserved			

10.2.4 Device Identification

The following registers provided device identification. Device ID, revision ID and auxiliary ID are read only.

AUXID Register (Address 0x58)

Figure 36:

AUXID Register

Addr: 0x58		AUXID		
Bit	Bit Name	Default	Access	Bit Description
7:4	Reserved			Reserved
3:0	AUXID	0000	R	Auxiliary Identification

REVID Register (Address 0x59)

Figure 37: REVID Register

Addr: 0x59		REVID		
Bit	Bit Name	Default	Access	Bit Description
7:3	Reserved			Reserved
2:0	REV_ID	000	R	Revision Number Identification

ID Register (Address 0x5A)

Figure 38: ID Register

Addr: 0x5A		ID		
Bit	Bit Name	Default	Access	Bit Description
7:0	ID	10000001	R	Part Number Identification Value 10000001

10.2.5 Spectral Interrupt Configuration

The spectral interrupt threshold registers provide 16-bit values to be used as the high and low thresholds for comparison to the 16-bit CH0_DATA values (ADC CH0). If SP_IEN (register 0xF9) is enabled and CH0_DATA is not between the two thresholds for the number of consecutive measurements specified in APERS (register 0xBD) an interrupt is set.

SP_TH_L_LSB Register (Address 0x84)

Figure 39: SP_TH_L_LSB Register

Addr: 0x84		SP_TH_L_	SP_TH_L_LSB	
Bit	Bit Name	Default	Access	Bit Description
				Spectral Low Threshold LSB
7:0	SP_TH_L_LSB	0x00	RW	This register provides the low byte of the low interrupt threshold (CH0).

SP_TH_L_MSB Register (Address 0x85)

Figure 40:

SP_TH_L_MSB Register

Addr: 0x85		SP_TH_L_	SP_TH_L_MSB		
Bit	Bit Name	Default	Access	Bit Description	
				Spectral Low Threshold MSB This register provides the high byte of the low interrupt threshold (CH0).	
7:0	SP TH L MSB	0x00	RW	Both SP_TH_L registers are combined to a 16-bit threshold. If the value captured by channel 0 is below the low threshold and the APERS value is reached, the bit SP_IEN is set and an interrupt is generated.	
	GI _III_E_IMOB			There is an 8-bit data latch implemented that stores the written low byte until the high byte is written. Both bytes will be applied at the same time to avoid an invalid threshold.	
				Note: The LSB register cannot be changed without writing to the MSB register. It is recommended to write to SP_TH_L_SB and SP_TH_L_MSB within one I ² C command.	

SP_TH_H_LSB Register (Address 0x86)

Figure 41:

SP_TH_H_LSB Register

Addr: 0x86		SP_TH_H_	SP_TH_H_LSB		
Bit	Bit Name	Default	Access	Bit Description	
7:0	SP_TH_H_LSB	0x00	RW	Spectral High Threshold LSB This register provides the low byte of the high interrupt threshold (CH0).	

SP_TH_H_MSB Register (Address 0x87)

Figure 42:

SP_TH_H_MSB Register

Addr: 0x87		SP_TH_H_	SP_TH_H_MSB		
Bit	Bit Name	Default	Access	Bit Description	
				Spectral High Threshold MSB This register provides the high byte of the high interrupt threshold (CH0).	
7:0	SP_TH_H_MSB	0x00	RW	Both SP_TH_H registers are combined to a 16-bit threshold. If the value captured by channel 0 is above the high threshold and the APERS value is reached, the bit SP_IEN is set and an interrupt is generated.	

CFG12 Register (Address 0x66)

Figure 43:

CFG12 Register

Addr: 0x66		CFG12	CFG12			
Bit	Bit Name	Default	Access	Bit Description	on	
7:3	Reserved	0		Reserved		
					bld Channel. used for interrupts and persistence, rmine device status and gain	
2:0	SP_TH_CH	0	RW	VALUE	CHANNEL	
				0	CH0	
				1	CH1	
				2	CH2	

Addr:	0x66	CFG12			
Bit	Bit Name	Default	Access	Bit Descripti	on
				3	CH3
				4	CH4
				5	CH5

10.2.6 Device Status Registers

The following registers provide status of the device and indicate details about saturation, interrupts, over temperature, device execution and ambient light flicker detection.

STATUS Register (Address 0x93)

The primary status register for AS7343 indicates if there are saturation or interrupt events that need to be handled by the user. This register is self-clearing, meaning that writing a "1" to any bit in the register clears that status bit. In this way, the user should read the STATUS register, handle all indicated event(s) and then write the register value back to STATUS to clear the handled events. Writing "0" will not clear those bits if they have a value of "1", which means that new events that occurred since the last read of the STATUS register will not be accidentally cleared. In case channel saturation has happened (ASAT or FDSAT), it is recommended to discard the measurement results and re-configure device configuration such as AGAIN and Integration Time to avoid saturation.

Figure 44: STATUS Register

Addr: 0)x93	STATUS		
Bit	Bit Name	Default	Access	Bit Description
7	ASAT	0	R, SC	Spectral and Flicker Detect Saturation. If ASIEN is set, indicates Spectral saturation. Check STATUS 2 register to distinguish between analog or digital saturation.
6:4	Reserved	0	R	Reserved
3	AINT	0	R, SC	Spectral Channel Interrupt. If SP_IEN is set, indicates that a spectral event that met the programmed thresholds and persistence (APERS) occurred.
2	FINT	0	R, SC	FIFO Buffer Interrupt. If FIEN is set, indicates that the FIFO_LVL fulfills the threshold condition. If cleared by writing 1, the interrupt will be asserted again as more data is collected. To fully clear this interrupt, all data must be read from the FIFO buffer.
1	Reserved	0	R	Reserved
0	SINT	0	R, SC	System Interrupt.

Addr:	0x93	STATUS		
Bit	Bit Name	Default	Access	Bit Description
				If SIEN is set, indicates that system interrupt is set. Refer to Status 5 register.

STATUS 2 Register (Address 0x90)

Figure 45:

STATUS 2 Register

Addr: 0x90		STATUS 2	STATUS 2		
Bit	Bit Name	Default	Access	Bit Description	
7	Reserved	0		Reserved	
				Spectral Valid.	
6	AVALID	0	R	Indicates that the spectral measurement has been completed	
5	Reserved	0		Reserved	
				Digital Saturation.	
4	ASAT_DIGITAL	0	R	Indicates that the maximum counter value has been reached. Maximum counter value depends on integration time set in the ATIME register.	
				Analog Saturation.	
3	ASAT_ANALOG	0	R	Indicates that the intensity of ambient light has exceeded the maximum integration level for the spectral analog circuit.	
2	Reserved	0	R	Reserved	
				Flicker Detect Analog Saturation.	
1	FDSAT_ANALOG	0	R	Indicates that the intensity of ambient light has exceeded the maximum integration level for the analog circuit for flicker detection.	
				Flicker Detect Digital Saturation.	
0	FDSAT_DIGITAL	0 R	R	Indicates that the maximum counter value has been reached during flicker detection.	

STATUS 3 Register (Address 0x91)

Figure 46:

STATUS 3 Register

Addr: (Addr: 0x91 STATUS 3			
Bit	Bit Name	Default	Access	Bit Description
7:6	Reserved	0		Reserved
5	INT_SP_H	0	R	Spectral Interrupt High.

Addr:	0x91	STATUS 3	STATUS 3	
Bit	Bit Name	Default	Access	Bit Description
				Indicates that a spectral interrupt occurred because the data exceeded the high threshold.
				Spectral Interrupt Low.
4	INT_SP_L	0	R	Indicates that a spectral interrupt occurred because the data is below the low threshold.
3:0	Reserved	0		Reserved

STATUS 5 Register (Address 0xBB)

Figure 47:

STATUS 5 Register

Addr: 0xBB		STATUS 5	STATUS 5	
Bit	Bit Name	Default	Access	Bit Description
7:4	Reserved	0		Reserved
3	SINT_FD	0	R	Flicker Detect Interrupt. If SIEN_FD is set, indicates that the FD_STATUS register status has changed
2	SINT_SMUX	0	R	SMUX Operation Interrupt. Indicates that SMUX command execution has finished.
1:0	Reserved	0		Reserved

STATUS 4 Register (Address 0xBC)

Figure 48:

STATUS 4 Register

Addr:	0xBC	STATUS 4	STATUS 4		
Bit	Bit Name	Default	Access	Bit Description	
				FIFO Buffer Overflow.	
7	FIFO_OV	0	R	Indicates that the FIFO buffer overflowed and information has been lost. Bit is automatically cleared when the FIFO buffer is read	
6	Reserved	0	R	Reserved	
				Over Temperature Detected.	
5	OVTEMP	0	R	Indicates the device temperature is too high. Write 1 to clear this bit.	
				Flicker Detect Trigger Error.	
4	FD_TRIG	0	R	Indicates that there is a timing error that prevents flicker detect from working correctly.	

Addr:	0xBC	STATUS 4	STATUS 4	
Bit	Bit Name	Default	Access	Bit Description
3	Reserved	0		Reserved
2	SP_TRIG	0	R	Spectral Trigger Error. Indicates that there is a timing error. The WTIME is too short for the selected ATIME.
1	SAI_ACTIVE	0	R	Sleep after Interrupt Active. Indicates that the device is in SLEEP due to an interrupt. To exit SLEEP mode, clear this bit.
0	INT_BUSY	0	R	Initialization Busy. Indicates that the device is initializing. This bit will remain 1 for about 300 µs after power on. Do not interact with the device until initialization is complete.

FD_STATUS Register (Address 0xE3)

Figure 49: FD_STATUS Register

Add	Addr: 0xE3		FD_STATUS		
Bit	Bit Name	Default	Access	Bit Description	
7:6	Reserved			Reserved	
5	FD_MEASUREMENT_VALID	0	R	Flicker Detection Measurement Valid. Indicates that flicker detection measurement is complete. Write 1 to this bit to clear this field.	
4	FD_SATURATION_DETECTED	0	R	Flicker Saturation Detected. Indicates that saturation occurred during the last flicker detection measurement, and the result may not be valid. Write 1 to this bit to clear this field.	
3	FD_120Hz_FLICKER_VALID	0	R	Flicker Detection 120 Hz Flicker Valid. Indicates that the 120 Hz flicker detection calculation is valid. Write 1 to this bit to clear this field.	
2	FD_100Hz_FLICKER_VALID	0	R	Flicker Detection 100 Hz Flicker Valid. Indicates that the 100 Hz flicker detection calculation is valid. Write 1 to this bit to clear this field.	
1	FD_120Hz_FLICKER	0	R	Flicker Detected at 120 Hz. Indicates if an ambient light source is flickering at 120 Hz.	
0	FD_100Hz_FLICKER	0	R	Flicker Detected at 100 Hz. Indicates if an ambient light source is flickering at 100 Hz.	

10.2.7 Spectral Data and Status

The ASTATUS register provides saturation and gain status associated to each set of spectral data. Reading the ASTATUS register (0x94) latches all 36 spectral data bytes to that status read. Reading these bytes consecutively (0x94 to 0xB8) ensures that the data is concurrent. All spectral data are stored as 16-bit values. If flicker detection is enabled, spectral channel five (CH5 ADC) is used for the flicker detection function. The ASTATUS and spectral data registers are read only.

ASTATUS Register (Address 0x94)

Figure 50:

ASTATUS Register

Addr:	0x94	ASTATUS	ASTATUS	
Bit	Bit Name	Default	Access	Bit Description
7	ASAT_STATUS	0	R, SC	Saturation Status. Indicates if the latched data is affected by analog or digital saturation.
6:4	Reserved	0	R	Reserved
3:0	AGAIN_STATUS	0	R, SC	Gain Status. Indicates the gain applied for the spectral data latched to this ASTATUS read.

DATA Register (Address 0x95/0xB8)

Figure 51:

DATA_N_L Register

Addr: 0	r: 0x95/97/99B7 DATA			
Bit	Bit Name	Default	Access	Bit Description
7:0	DATA_N_L	0	R	Spectral Data – low byte

Figure 52:

DATA_N_H Register

Addr: (0x96/98/9AB8	DATA_N_F	1	
Bit	Bit Name	Default	Access	Bit Description
7:0	DATA_N_H	0	R	Spectral Data – high byte

10.2.8 Miscellaneous Configuration

CFG0 Register (Address 0xBF)

Figure 53: CFG0 Register

Addr: 0xBF		CFG0	CFG0		
Bit	Bit Name	Default	Access	Bit Description	
7:6	Reserved	0		Reserved	
				Low Power Idle.	
5	LOW_POWER	0	RW	When asserted, the device will automatically run in a low power mode whenever all functions are in wait states or disabled.	
			RW	Register Bank Access	
				0: Register access to register 0x80 and above	
4	REG BANK	0		1: Register access to register 0x20 to 0x7F	
·				Note: Bit needs to be set to access registers 0x20 to 0x7F. If registers 0x80 and above needs to be accessed, bit needs to be set to "0".	
3	Reserved	0		Reserved	
2	WLONG	0	RW	Trigger Long.	
				Increases the WTIME setting by a factor of 16.	
1:0	Reserved	0		Reserved	

CFG3 Register (Address 0xC7)

Figure 54: CFG3 Register

Addr: 0xC7		CFG3	CFG3		
Bit	Bit Name	Default	Access	Bit Description	
7:5	Reserved	0		Reserved	
4	SAI	0	RW	Sleep After Interrupt. If set, the oscillator is turned off whenever an interrupt is active. SAI_ACTIVE is set in this event. To activate the oscillator again, clear all interrupts and clear the SAI_ACTIVE bit.	
3:0	Reserved	0xC		Reserved	

CFG6 Register (Address 0xF5)

Figure 55: CFG6 Register

Addr: 0xF5		CFG6	CFG6				
Bit	Bit Name	Default	Access	Bit Descri	ption		
					SMUX command to execute when KEN gets set. Do not change during		
				VALUE	SMUX_CMD		
4:3	SMUX_CMD	2	RW	0	ROM code initialization of SMUX		
				1	Read SMUX configuration to RAM from SMUX chain		
				2	Write SMUX configuration from RAM to SMUX chain		
				3	Reserved, do not use		

CFG9 Register (Address 0xCA)

Figure 56: CFG9 Register

Addr: 0xCA		CFG9	CFG9	
Bit	Bit Name	Default	Access	Bit Description
7	Reserved	0		Reserved
6	SIEN_FD	0	RW	System Interrupt Flicker Detection. Enables system interrupt when flicker detection status change has occurred.
5	Reserved			Reserved
4	SIEN_SMUX	0	RW	System Interrupt SMUX Operation. Enables system interrupt when SMUX command has finished
3:0	Reserved			Reserved

CFG20 Register (Address 0xD6)

Figure 57: CFG20 Register

Addr: 0xD6		CFG20	CFG20		
Bit	Bit Name	Default	Access	Bit Description	
7	FD_FIFO_8b	0	RW	Enable 8-bit FIFO Mode for Flicker Detection. 0: Disabled 1: Enabled Note: FD_TIME must be smaller than 256, else flicker data might be larger than 8 bit. In that case flicker data gets saturated to 0xFF.	
6:5	auto_smux	0	RW	Automatic Channel Read-Out 0: 6 Channel FZ, FY, FXL, NIR, 2xVIS, FD 1: Reserved; 2: Automatic 12 channel Cycle 1: FZ, FY, FXL, NIR, 2xVIS, FD Cycle 2: F2, F3, F4, F6, 2xVIS, FD 3: Automatic 18 channel Cycle 1: FZ, FY, FXL, NIR, 2xVIS, FD Cycle 2: F2, F3, F4, F6, 2xVIS, FD Cycle 2: F2, F3, F4, F6, 2xVIS, FD Cycle 3: F1, F7, F8, F5, 2xVIS, FD Note: The bit "auto_smux" should only be changed before a measurement is started. Once a measurement is started, the device is automatically processing the channels as per definition above and storing the measurement results in the eighteen data registers. 2xVIS: Per default the "Top Left" and "Both Right" VIS/CLEAR PD is read-out.	
4:0	Reserved			Reserved	

PERS Register (Address 0xCF)

Figure 58: PERS Register

Addr: 0xCF		PERS		
Bit	Bit Name	Default	Access	Bit Description
7:4	Reserved	0		Reserved
3:0	APERS	0	RW	Spectral Interrupt Persistence.

Addr: 0xCF PERS					
Bit	Bit Name	Default	Default Access Bit Description		cription
				Defines a filter for the number of consecutive occurrences that spectral data must remain outside the threshold range between SP_TH_L and SP_TH_H before an interrupt is generated. The spectral data channel used for the persistence filter is set by SP_TH_CHANNEL. Any sample that is inside the threshold range resets the counter to 0.	
				VALUE	CHANNEL
				0	Every spectral cycle generates an interrupt
				1	1
				2	2
				3	3
				4	5
				5	10
					5 x (APERS – 3)
				14	55
				15	60

10.2.9 FIFO Buffer Data and Status

The FIFO buffer is used to poll spectral data with fewer I²C read and write transactions. The FIFO buffer is 256 bytes of RAM containing 128 two-byte datasets. If the FIFO overflows (i.e. 129 datasets before host reads data from the FIFO buffer), an overflow flag will be set and new data will be lost. The host acquires data by reading addresses: 0xFE – 0xFF. The register address pointer automatically wraps from 0xFF to 0xFE as data are read. Data can be read one byte at a time or in blocks, (there is no block-read length limit). When reading single bytes, the internal FIFO read pointer and the FIFO Buffer Level, FIFO_LVL, are updated each time register 0xFF is read. For block-reads, the internal FIFO read pointer and the FIFO Buffer Level, FIFO_LVL update for each two-byte entry. If the FIFO continues to be accessed after FIFO_LVL = 0, the device will return 0 for all data. The FINT interrupt indicates when there is valid data in the FIFO buffer. The amount of unread data is indicated by the FIFO_LVL.

FIFO_MAP Register (Address 0xFC)

Figure 59: FIFO_MAP Register

Addr:	0xFC	FIFO_MAP			
Bit	Bit Name	Default	Access	Bit Description	
7	Reserved	0		Reserved	
6	FIFO_WRITE_CH5_DATA	0	RW	FIFO Write CH5 Data. If set, CH5 data is written to the FIFO Buffer (two bytes per sample). Note: If flicker detection is enabled, this bit is ignored. Refer to register 0xD7 for FDEN="1".	
5	FIFO_WRITE_CH4_DATA	0	RW	FIFO Write CH4 Data. If set, CH4 data is written to the FIFO Buffer (two bytes per sample).	
4	FIFO_WRITE_CH3_DATA	0	RW	FIFO Write CH3 Data. If set, CH3 data is written to the FIFO Buffer (two bytes per sample).	
3	FIFO_WRITE_CH2_DATA	0	RW	FIFO Write CH2 Data. If set, CH2 data is written to the FIFO Buffer (two bytes per sample).	
2	FIFO_WRITE_CH1_DATA	0	RW	FIFO Write CH1 Data. If set, CH1 data is written to the FIFO Buffer (two bytes per sample).	
1	FIFO_WRITE_CH0_DATA	0	RW	FIFO Write CH0 Data. If set, CH0 data is written to the FIFO Buffer (two bytes per sample).	
0	FIFO_WRITE_ASTATUS	0	RW	FIFO Write Status. If set, ASTATUS (one byte per sample) is written to the FIFO Buffer.	

FIFO_CFG0 Register (Address 0xDF)

Figure 60:

FIFO_CFG0 Register

Addr: 0xDF FIFO_CFG0		0		
Bit	Bit Name	Default	Access	Bit Description
7	FIFO_WRITE_FD	0	RW	FIFO Write Flicker Detection If set flicker raw data is written into FIFO (one byte per sample).
				Note: This bit is ignored if flicker detection is disabled. Refer to register 0xFC for FDEN="0".
6:0	Reserved	0100001		Reserved, do not change

FIFO_LVL Register (Address 0xFD)

Figure 61:

FIFO_LVL Register

Addr: 0xFD FIFO_LV		FIFO_LVL		
Bit	Bit Name	Default	Access	Bit Description
7:0	FIFO_LVL	0	R	FIFO Buffer Level. Indicates the number of entries (each are 2 bytes) available in the FIFO buffer waiting for readout. The FIFO RAM is 256 byte, the FIFO_LVL range is from 0 entries to 128 entries.

FDATA Register (Address 0xFE and 0xFF)

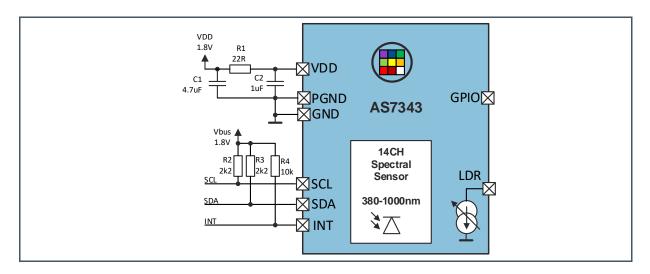
Figure 62:

FDATA_L Register

Addr: ()xFE	FDATA_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	FDATA	0	R	FIFO Buffer Data

Figure 63:

FDATA_H Register


Addr: 0xFF		FDATA_H		
Bit	Bit Name	Default	Access	Bit Description
15:8	FDATA	0	R	FIFO Buffer Data

11 Application Information

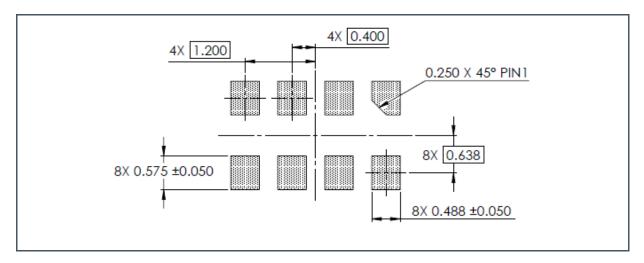
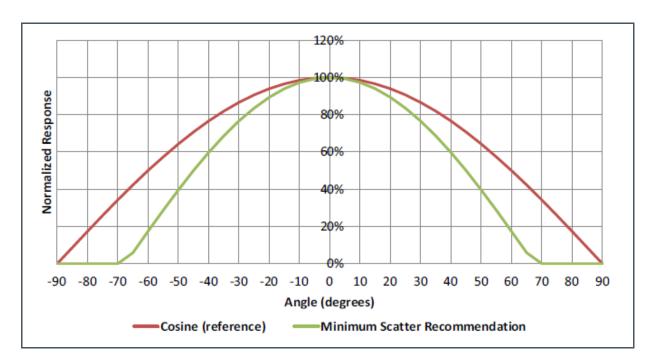

11.1 Schematic

Figure 64: Application Example

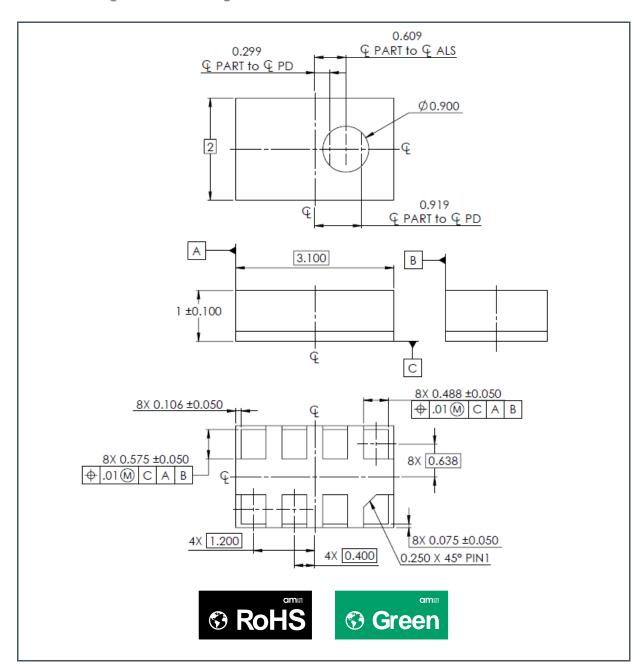
11.2 PCB Pad Layout

Figure 65: Recommended PCB Pad Layout


- (1) All dimensions are in millimeters.
- (2) Dimension tolerances are 0.05 mm unless otherwise noted.
- (3) This drawing is subject to change without notice.

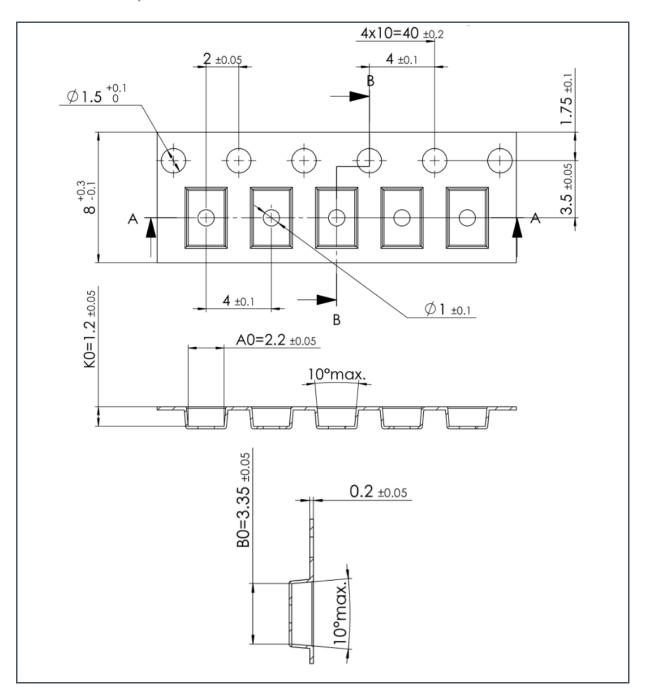
11.3 Application Optical Requirements

For optimal performance, an achromatic diffuser shall be placed above the device aperture. The recommended solution is a bulk diffuser that meets the minimum recommended scattering characteristic shown below. For more details refer to the optical design guide or contact ams OSRAM.


Figure 66: Diffuser Characteristics

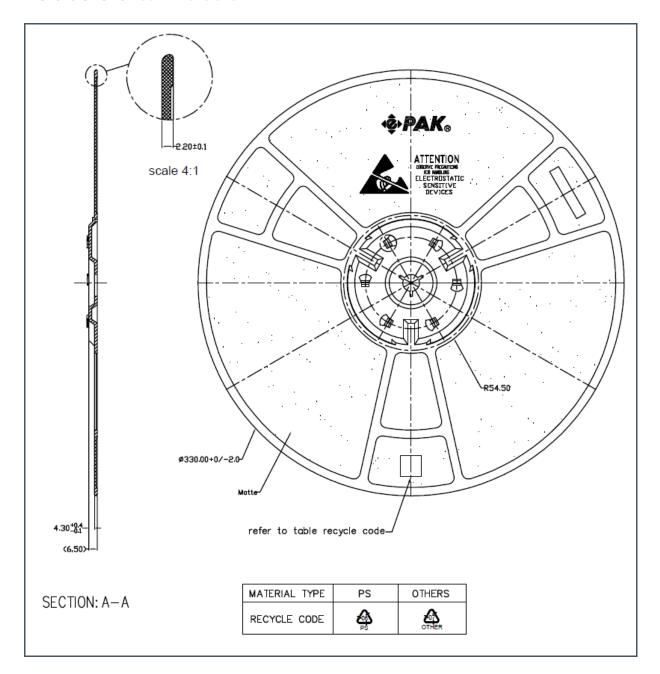
12 Package Drawings & Markings

Figure 67: OLGA8 Package Outline Drawing



- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Dimensioning and tolerance conform to ASME Y14.5M-1994.
- (3) This package contains no lead (Pb).
- (4) This drawing is subject to change without notice.

13 Tape & Reel Information


Figure 68: AS7343 OLGA8 Tape Dimensions

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) This drawing is subject to change without notice.

Figure 69: AS7343 OLGA8 Reel Dimensions

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) This drawing is subject to change without notice.

14 Soldering & Storage Information

The module has been tested and has demonstrated an ability to be reflow soldered to a PCB substrate. The solder reflow profile describes the expected maximum heat exposure of components during the solder reflow process of product on a PCB. Temperature is measured on top of component. The components should be limited to a maximum of three passes through this solder reflow profile.

Figure 70: Solder Reflow Profile Graph

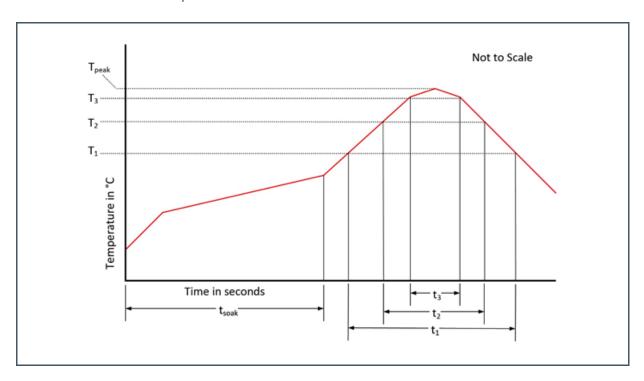


Figure 71: Solder Reflow Profile

Parameter	Reference	Device
Average temperature gradient in preheating		2.5 °C/s
Soak time	t _{soak}	2 to 3 minutes
Time above 217 °C (T1)	t ₁	Max 60 s
Time above 230 °C (T2)	t ₂	Max 50 s
Time above T _{peak} – 10 °C (T3)	t ₃	Max 10 s
Peak temperature in reflow	T _{peak}	260 °C
Temperature gradient in cooling		Max −5 °C/s

14.1 Storage Information

14.1.1 Moisture Sensitivity

Optical characteristics of the device can be adversely affected during the soldering process by the release and vaporization of moisture that has been previously absorbed into the package.

To ensure the package contains the smallest amount of absorbed moisture possible, each device is baked prior to being dry packed for shipping. Devices are dry packed in a sealed aluminized envelope called a moisture-barrier bag with silica gel to protect them from ambient moisture during shipping, handling, and storage before use.

14.1.2 Shelf Life

The calculated shelf life of the device in an unopened moisture barrier bag is 24 months from the date code on the bag when stored under the following conditions:

Shelf Life: 24 months

Ambient Temperature: <40 °C

Relative Humidity: <90%

Rebaking of the devices will be required if the devices exceed the 24 months shelf life or the Humidity Indicator Card shows that the devices were exposed to conditions beyond the allowable moisture region.

14.1.3 Floor Life

The module has been assigned a moisture sensitivity level of MSL 3. As a result, the floor life of devices removed from the moisture barrier bag is 168 hours from the time the bag was opened, provided that the devices are stored under the following conditions:

Floor Life: 168 hours

Ambient Temperature: <30°C

Relative Humidity: <60%

If the floor life or the temperature/humidity conditions have been exceeded, the devices must be rebaked prior to solder reflow or dry packing.

14.1.4 Rebaking Instructions

When the shelf life or floor life limits have been exceeded, rebake at 50 °C for 12 hours.

15 Revision Information

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams-OSRAM AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams-OSRAM AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Changes from previous version to current revision v6-00	Page
Updated Re_F1, Re_F2 and Re_F8 responsivity parameter under Figure 8	11

- Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- Correction of typographical errors is not explicitly mentioned.

16 Legal Information

Copyrights & Disclaimer

Copyright ams-OSRAM AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams-OSRAM AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams-OSRAM AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams-OSRAM AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams-OSRAM AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams-OSRAM AG for each application. This product is provided by ams-OSRAM AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams-OSRAM AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams-OSRAM AG rendering of technical or other services.

RoHS Compliant & ams Green Statement

RoHS Compliant: The term RoHS compliant means that ams-OSRAM AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories plus additional 4 substance categories (per amendment EU 2015/863), including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br/Cl): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) and do not contain Chlorine (Cl not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams-OSRAM AG knowledge and belief as of the date that it is provided. ams-OSRAM AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams-OSRAM AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams-OSRAM AG and ams-OSRAM AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Headquarters

ams-OSRAM AG Tobelbader Strasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0

Please visit our website at www.ams.com

Buy our products or get free samples online at www.ams.com/Products
Technical Support is available at www.ams.com/Technical-Support

Provide feedback about this document at www.ams.com/Document-Feedback For sales offices, distributors and representatives go to www.ams.com/Contact For further information and requests, e-mail us at ams_sales@ams.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ams OSRAM:

AS7343-DLGM AS7343-DLGT